A Localized RBF Meshfree Method for the Numerical Solution of the Kdv-Burger’s Equation

نویسندگان

  • G. C. Bourantas
  • V. C. Loukopoulos
چکیده

This paper formulates a local Radial Basis Functions (LRBFs) collocation method for the numerical solution of the non-linear dispersive and dissipative KdV-Burger’s (KdVB) equation. This equation models physical problems, such as irrotational incompressible flow, considering a shallow layer of an inviscid fluid moving under the influence of gravity and the motion of solitary waves. The local type of approximations used, leads to sparse algebraic systems that can be solved efficiently. The Inverse Multiquadrics (IMQ), Gaussian (GA) and Multiquadrics (MQ) Radial Basis Functions (RBF) interpolation are employed for the construction of the shape functions. Accuracy of the method is assessed in terms of the L2 and L∞ error norms and three conservative properties related to mass, momentum and energy. Additionally we investigate how both the accuracy and the stability of the proposed method are affected from the number of nodes in the support domain, the parameter dependent RBFs, the condition number of the resulting algebraic systems and finally the time step length. Numerical experiments demonstrate the accuracy and the robustness of the method for solving nonlinear dispersive and dissipative problems, while stability analysis demonstrates that the numerical scheme is conditionally stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

A Numerical Meshless Technique for the Solution of the two Dimensional Burger’s Equation Using Collocation Method

In this paper we propose a meshfree technique for the numerical solution of the two dimensional Burger’s equation. Collocation method using the Radial Basis Functions (RBFs) is coupled with first order accurate finite difference approximation. Different types of RBFs are used for this purpose. Performance of the proposed method is successfully tested in terms of various error norms. In the case...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation

In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...

متن کامل

A numerical solution of a Kawahara equation by using Multiquadric radial basis function

In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012